Excursions with Hydra

I’ve been practicing visuals with Olivia Jack‘s wonderful system Hydra the past couple of days and I have been enjoying it very, very much. It’s been a blast to have a higher-level abstraction layer to work with over coding GLSL shaders directly. I suppose a big factor in my joy is that I tend to spend a lot more time with JS than I do GLSL too. 😉

I think knowing some shader programming and practices certainly made learning Hydra a lot quicker than it would have been otherwise. Still, lots to learn and practice. 🙂

Additive Pitch Rhythms Using Hexbeat

Practice session today using additive pitch hexbeat rhythms to generate melodic contours.

Each hexbeat() is generating sequences of 1’s and 0’s which are then multiplied to alternate between things like 7 and 0.  So if I add one that alternates between 2 and 0, I get 9,7,2, and 0 as possibilities.  Then with say 4 and 0, I get additional combinations.  With the patterns of different lengths (I’ve been using mostly prime number lengths) it generates a nice long overall pitch pattern, which is then masked by the rhythmic hexplay() pattern.  I then add a choose() to say “play 70% of the time” and I find all of that together is quick to write, generates good variety, but has an underlying structure that is stable.  (It’s been on my mind how to mix randomness + stability in interesting ways and I’ve found these explorations have been leading to some interesting pattern generation.)

This desmos graph visualizes an example of a 3-part hex pitch rhythm added together:

(Click on the “Edit on Desmos” link in the graph to turn on/off visualization of the various individual hex pitch rhythms.)

Live Code – Modular-esque

Live code session using csound-live-code and https://live.csound.com.

Initial code happens for about 2m40s, then sound begins.

For those interested in the code, the session uses:

1. start UDO for working with the different always-on instruments
2. vco2 square wave for enveloping (has a nicer quality to it than
using lfo with type 3, IMO)
3. portk for frequency glide
4. chnset for immediate setting of a channel value as part of performance
5. chnset within an always-on instrument (“Mod”) together with k-rate
randh to show how to approach using continuous values with channels